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Abstract

In this Questions contribution, I consider some of the accepted methods of measuring viscosity ratios in rocks, and pose a new
one. For a wide range of strain and orientations, it can be shown that the bedding normal is immeasurably close to the XY

plane, and this has applications to the relationship between cleavage and strain. I therefore propose that with some limitations,
cleavage refraction can provide a measure of e�ective viscosity ratios in layered rocks. Examples show that cleavage refraction
across competence contrasts yields surprisingly small viscosity ratios. This method might also provide a way of distinguishing

Newtonian from non-Newtonian behaviour of rocks over time and space. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

When geological structures such as folds are mod-
elled, theoretically, numerically or with analogue ma-
terials, the competence contrast is quanti®ed as the
viscosity ratio of layer to matrix. For linear-viscous
materials (Newtonian), this ratio is a constant: but for
non-linear materials, viscosity ratios will be dependent
on strain rate, and perhaps other system variables. In
multilayers with di�erent power-law properties, the vis-
cosity contrasts are not simply dependent on the com-
ponent layers, but also on the type of bulk ¯ow and/or
the orientations of the layers (Treagus, 1993); they
might therefore be expected to vary throughout a de-
formation.

The viscosity of a ¯uid or rock strictly only
describes the properties governing instantaneous ¯ow;
and likewise, the viscosity ratios. However, in geologi-
cal terms and time scales, we need to conceive of a
®nite e�ective viscosity that describes the properties of
total ¯ow, integrated over a certain interval of natural
deformation. The viscosity ratios assumed or deter-
mined for geological structures, or their modelling,
would be de®ned this way, and are qualitatively

termed competence or ductility contrasts (Ramsay,
1982).

Many types of geological structures provide indi-
cations of competence or viscosity contrasts: for
example, folds, boudins, mullions, and cleavage refrac-
tion (Ramsay, 1982). Such structures allowed Ramsay
to construct an `order of competence' for suites of
rocks deformed under similar metamorphic conditions.
How might such a scale of competence be converted
into numerical viscosity ratios?

1.1. Ways of quantifying viscosity ratios in rocks

1.1.1. Folds
Viscosity ratios in rocks have been deduced from

wavelength±thickness ratios of folds (e.g. Sherwin and
Chapple, 1968; Hara and Shimamoto, 1984), by appli-
cation of single-layer buckling theory to rocks. The
complexities of various buckling theories cannot be
fully reviewed here, except to note that when re®ne-
ments such as layer-parallel shortening and/or non-
Newtonian rheology are included, there are then so
many variables that viscosity ratios cannot be deter-
mined for a particular wavelength±thickness ratio
without prior assumptions. Using two variants of
buckling theory, Hara and Shimamoto (1984) calcu-
lated viscosity ratios (from single-layer folds) of 94±
147 for quartz vein±pelitic schist, 23±40 for quartz
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vein±psammitic schist, and 14±32 for quartz vein±
basic schist. (A psammitic to pelitic schist might, by
deduction, be estimated to be in the range from 2.4 to
6.) The greatest problem in application of this
approach, is that most natural folds are not single-
layered, but multilayered.

1.1.2. Conglomerates
Another way of trying to quantify viscosity ratios

comes from the study of deformed conglomerates. This
may be idealised into the theory of deformed ellipsoi-
dal objects of di�erent viscosity from a matrix (e.g.
Gay, 1968a,b; Bilby et al., 1975). Lisle et al. (1983)
applied such theory to deformed conglomerates. While
reporting a wide spread of data which disallow pre-
cision in either strain measurements or computation of
viscosity ratios, they derived average pebble to matrix
viscosity ratios of 9 for quartz, 2±1.4 for leptite, and
0.9 for shale. I am currently developing comparable
research on deformed non-ellipsoidal objects (Treagus
et al., 1996), and their natural occurrence in deformed
fragmental rocks (work in progress with J.E. Treagus),
to be reported elsewhere.

1.1.3. Strain variations
A third method of determining viscosity ratios is

from strain variations in rocks, as modelled theoreti-
cally (Treagus, 1983, 1988, and references therein) and
in analogue experiments (Treagus and Sokoutis, 1992).
Fig. 1 illustrates theoretical strain refraction and vari-
ation across a bonded boundary with viscosity ratio of
5. Fundamental to this analysis is the rule that the
shear strain-rate ratio across a boundary is equal to

the inverse viscosity ratio. This leads to a more general
rule for ®nite strain (Treagus, 1983): the shear strain
ratio across a boundary is the inverse viscosity ratio:

gA=gB � tan cA=tan cB � mB=mA: �1�
The deformation variations (Fig. 1) can be con-

sidered in terms of an equal component of layer-paral-
lel/perpendicular strain, and a refracting component of
shear strain. It follows that where layers are in perfect
layer-parallel strain (so g � 0), deformation is homo-
geneous and there is no strain refraction.

To apply Eq. (1) to rocks, we require a feature that
was originally layer-normal, to record the shear strains
across layer boundaries. Sedimentary dykes or worm
burrows, if it can be assumed that these always initiate
perpendicular to bedding, would be ideal indicators,
particularly if they were seen to refract to provide
angles such as cA and cB in Fig. 1. However, sedimen-
tary features such as these are more likely to be con-
®ned to one unit, rather than traversing from one rock
layer to another, so may rarely provide su�cient data
to apply this simple equation.

The most pervasive feature seen through successive
rock layers is usually a fanning or refracting cleavage,
that might (arguably) be assumed to represent the XY
planes of refracting strain ellipsoid in the rocks. From
many of the examples of theoretical two-dimensional
strain variations given in Treagus (1983, 1988), the X
directions are found to be very close in orientation to
the deformed layer normals. This leads me to the ques-
tion: Are viscosity ratios of rocks measurable from clea-
vage refraction?

2. Strain orientation vs shear strain

To attempt an answer to this question, I will ®rst

Fig. 1. Strain refraction from layer A to layer B with viscosity ratio

5, after Treagus (1983, 1988). (a) Undeformed square sections of two

layers. (b) Deformed states, with parallelograms showing com-

ponents both of layer-parallel strain and shearing (c ). The strain

refraction is given by tan cA=tan cB � 5. The orientations of long

axes of the strain ellipses to layering are yA and yB.

Fig. 2. Two-dimensional strain of a circle to an equal-area ellipse,

showing changes in orientation of an arbitrary line (L ) and its nor-

mal (N ), the angular shear (c ), and orientation (y ) to the maximum

extension (X or l1).
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consider the geometry of strain in terms of lines and
orientations, without thought of strain refraction or
viscosity ratios. The analysis will be two-dimensional
and will consider the mutual relationship between
angular shear (c ) of a line (L ), and its orientation (y )
in a strain ellipse (Fig. 2). Following the expressions in
Ramsay (1967, equations 3.31 and 3.42) for determin-
ing reciprocal quadratic elongation (l ') and shear
strain (g � tan c), for an arbitrary line at y to the
maximum extension (X or l1):

l 0 � l
0
1 cos2 y� l

0
2 sin2 y �2�

g 0 � gl 0 � �l 02 ÿ l
0
1�sin y cos y: �3�

Consider this arbitrary line (L ) to be bedding or
layering orientation in strain, so that its angular shear
(c ) is the change with respect to layer-normal, N (Fig.
2). These equations can then be manipulated to derive
an expression for c in terms of y and the strain. This

process is simpli®ed by considering equal-area plane
strain, so that all the expressions can be given in terms
of stretch ratio, R (with R � 1=l

0
1 � l

0
2). It is found

that:

tan c � �R2 ÿ 1�tan y=�1� R2 tan2 y�: �4�
To determine how close the deformed normal, N ', is
to the X or l

0
1 axis (Fig. 2), we need to compare c

with (908ÿ y), which I term angle b. [b angles of X
axes or cleavage traces to layer normals are a useful
method of analysing strain and cleavage in folds
(Treagus, 1982, 1997).]

Fig. 3 shows the relationships of c, R, and y or b,
graphically, derived from Eq. (4). b angles are always
more than c, but for a signi®cant ®eld of strain and c
or b values, they have very close values (note lines of 1
and 58 di�erence). The strain values for which b � c
(taken as <18 di�erence) are R � 4:6 for b � 208
(y � 708), and R � 7 for b � 408 (y � 508). It should
be noted that there is no deformation history in the

Fig. 3. The relationships of c, R, and y or b, derived from Eq. (4). R is the strain ratio, c and y are de®ned in Fig. 2, and b � �908ÿ y�. Solid
lines are drawn at 108 intervals of y and b. Note that c is always <b, but the values become close: see broken curves marking 18 and 58 di�er-
ence. The graph region above/left of the 18 curve is taken as b � c. The R and y values from published data for slates are shown stippled.
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data in Fig. 3; the relationships are solely those of a
strain ellipse. Curves could be added to describe the re-
lationships for particular deformation histories, such
as layer-parallel simple shear, or pure shear in a par-
ticular orientation.

3. Application to cleavage refraction (and questions
about cleavage)

How might the information in Fig. 3 be relevant to
strain and cleavage refraction in rocks? Or indeed, to
the thornier question of whether it can be assumed
that cleavage exactly represents the XY plane of strain
(Williams, 1976)? To answer this, we need to consider
values of strain and cleavage±bedding angles in layered
and folded rocks.

3.1. Slates and slaty cleavage

A strain ratio of R � 2 (130% shortening) is some-
times taken as a threshold for cleavage formation in
mudrocks. Classic strain data from reduction spots in
many Cambrian slates (Wood, 1974; ®g. 4) yield R
(� X=Z) values in a wide range from R � 3 to 22, with
a concentration at 5±10. These rocks have folds yield-
ing cleavage±bedding angles (y ) of 90±458 (b=0±458).
This range of data is stippled in Fig. 3, as typical for
slate belts, for comparison with the calculated relation-
ships for c and y or b discussed above. The R = 5±10
concentration occupies the range where b � c, for
b=0±258 (cleavage±bedding angles 65±908). Only for b
in excess of 408 (cleavage±bedding angles <508) do
the di�erences from c begin to exceed 28. However, it
is unlikely that angles could be recorded to a 28 accu-
racy, in the ®eld, and di�erences even of 58 might not
be measurable. [There are analogies, here, to Ghosh's
consideration of shear along foliations (Ghosh, 1982).]
If this is the case, there is an even greater range of
strains and orientations where cleavage and deformed
layer-normals might be indistinguishable (Fig. 3; 58
curve).

Cleavage±bedding angles recorded by Gray (1981) in
folded rocks from the Appalachians show minima of
about 408 for mudrock (and 508 and 608 for limestone
and sandstone, respectively). This, again, tends to con-
®rm a maximum b of 508, placing the data in the ®eld
where the deformed bedding-normal and XY plane are
virtually indistinguishable.

From these data, it might be expected that in slates,
original bedding-perpendicular features such as sand-
stone dykes and worm burrows would appear to lie in
the cleavage planes. This appearance of parallelism
may explain one of the paradoxes concerning cleavage
formation: whether cleavage represents material or
immaterial planes (Williams, 1976). [Other arguments,

such as cleavage and the `dewatering' hypothesis will
not be expanded here (Siddans, 1972; Wood, 1974;
Groshong, 1976, and references therein).]

I conclude that cleavage can be used as an approxi-
mation for the deformed bedding normal in slates, at
strain ratios of >5, and/or bedding±cleavage angles of
>458 (b<458). However, to use cleavage as a bedding-
parallel shear strain indicator, to determine a viscosity
ratio from Eq. (1), (a) evidence of sharp cleavage
refraction across a competence contrast is needed, and
(b) the refracted cleavage must also be assumed to be
an approximation to the deformed bedding-normal. It
is therefore necessary to ask whether cleavage of other
morphologies (e.g. spaced) either originated as a bed-
ding-perpendicular feature, or can be approximated as
such.

3.2. Other rocks and cleavages

In my earlier reviews of the relationship of cleavage
to strain for other cleavage morphologies (Treagus,
1983, 1988), such as spaced cleavage, I concluded there
was little strain data available to prove or disprove
parallelism to XY planes. Strain is di�cult to measure
in weakly deformed competent rocks, and where clea-
vages are material seams such as pressure-solution sur-
faces, strain may be quite localized within the rock.
Nevertheless, it is di�cult to avoid the conclusion that
most spaced cleavages must be material surfaces.

Geiser (1974) and Groshong (1976) concluded that
their pressure-solution spaced cleavages originated per-
pendicular to bedding. Likewise, Yang and Gray
(1994) conclude that their cleavage in folded sand-
stones originated perpendicular to bedding, in early
layer-parallel shortening. This raises two questions as
alternatives. (1) Is it a feature of competent rocks, for
principal strain axes to be oriented nearly layer-paral-
lel/perpendicular? This is demonstrated by my results
on strain refraction (cited earlier). (2) Is it a feature of
spaced cleavages, to form subperpendicular to bedding,
even where principal strains are not? This appears to
be the case in rocks which have two cleavages, one
representing material surfaces, the other a grain-shape
fabric (Boulter, 1979; Yang and Gray, 1994). Although
I cannot address all these questions about cleavage in
this article, it might be reasonable to conclude that
spaced cleavages in competent rocks are a better indi-
cator of initial layer-normal material planes (perhaps
subsequently rotated and deformed in folding), than
they are of XY planes of total or tectonic strain. If this
is indeed true, they provide the required bedding-shear
indicator from which to calculate a viscosity ratio.

3.3. Verdict

For several di�erent reasons, it is concluded that
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refracting ®rst cleavages across lithological sequences
may provide an approximate measure of shear strain
variations, and therefore may be used to measure vis-
cosity ratios. So instead of the simple Eq. (1), given
earlier as:

gA=gB � tan cA=tan cB � mB=mA,

an equation can now be written in terms of b:

tan bA=tan bB � mB=mA, �5�
or in terms of cleavage±bedding angles (y ):

tan yA=tan yB � mA=mB: �6�
This last equation is a tentative `answer' to the ques-

tion posed at the beginning. Its restrictions and poten-
tial applications are considered next.

4. Discussion and examples

The simple relationship of orientations of strain axes
or fabrics to viscosity ratio given in Eq. (6), and with
certain restrictions, has a potentially wide application
in structural geology. The restrictions have been dis-
cussed above in terms of slates, and also by testing Eq.
(6) for the theoretically derived strain refraction pat-
terns in Treagus (1983, 1988). These are summarized
as follows.

Fig. 4. Four examples of cleavage refraction that might be used to estimate viscosity ratios in rocks. (a) Cleavage refraction (dashed lines) across

beds of greywackes and slates, drawn from Ramsay (1967, ®g. 7-71), including Ramsay's own trajectory (bold line). Bedding±cleavage angles (y )
are shown. Black circle is coin scale. (b) Cleavage refraction in graded psammite (stippled base) to pelite, and cleavage±bedding angles, drawn

from Ramsay and Huber (1983, ®g. 10.22). Black circle is coin scale. (c) Cleavage fanning and refraction in folded psammites and pelites

(measured beds numbered from 1 to 4), after Treagus (1982, ®g. 6). (d) Schistosity refraction from a gneiss into a composite dyke with a

quartzo-feldspathic fringe (stippled) and biotized amphibolite inner region (shown by dashed foliation traces), drawn after Sengupta (1997, ®g.

17.6), with a typical trajectory shown in bold.
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1. The layering should be in the shortening ®eld of
®nite strain.

2. Cleavage±bedding angles should ideally be more
than 458: but the method may work for values
down to about 308 if strain is high enough.

3. The method seems most amenable to viscosity ratios
between 1 and 10 (in contrast to calculations from
buckling analysis).

4. The analysis would break down for extremely com-
petent rocks, where strain would be negligible, and
cleavage might not be formed. For extremely incom-
petent rocks, cleavage±bedding angles might be too
small: see point 2.

With these restrictions in mind, I consider some
examples in Fig. 4, taken from published sources. Fig.
4(a) is an example of slaty cleavage refraction, from
Ramsay (1967, ®g. 7-71). Cleavage±bedding angles are
shown, yielding pseudo-viscosity ratios among grey-
wacke and slate (with respect to the 438-cleaved layer)
of 2.9, 2.2, 2.5, 0.75 and 2.8, from top to bottom. An
example of curved cleavage refraction in graded units is
given in Fig. 4(b), from Ramsay and Huber (1983, ®g.
10.22). The viscosity ratio of the psammitic base to
pelitic units is found to be 6.4. The example in Fig.
4(c) (after Treagus, 1982, ®g. 6) shows the potential of
the method for folded rocks. (This fold was formerly
used to illustrate a cleavage classi®cation of folds with
a b plot.) The cleavage±bedding angles around the
fold yield viscosity ratios of layers, with respect to
layer 4, of 0.6±0.9 for bed 1, 1.6±1.7 for bed 2, and
2.2±2.7 for bed 3. The maximum psammite to pelite
ratio is therefore 2.5±4.0.

If this is a viable method for measuring viscosity
ratios in folded rocks, it opens up a possible new
method for distinguishing linear from non-linear rheol-
ogy. It was emphasised at the beginning that only if
rocks behave as Newtonian ¯uids can we expect a con-
stant viscosity ratio between adjacent rock layers,
throughout a structure. For example, if the layers in
Fig. 4(c) behaved as power-law ¯uids (recalling that
e�ective viscosity ratios would vary according to strain
rate, deformation history and layer orientation), there
is no reason to expect the same viscosity ratios all
around the fold, among layers 1±4. I shall be pursuing
this line of enquiry in a future research programme on
rheology of rocks and structures.

The ®nal example, Fig. 4(d) (after Sengupta, 1997,
®g. 17.6), illustrates refraction of schistosity from a
gneiss though a dyke and its more competent fringe. I
tentatively suggest that the schistosity variations here
provide a way of measuring viscosity ratios. The data
yield values of 1.5 for the dyke fringe to gneiss host,
and 2.4 for dyke fringe to inner dyke. Although the
`cleavage' here is a schistosity/gneissosity, and must be
considered a di�erent kind of structure from the `®rst'

cleavages in the three previous examples, the high
strain associated with schists and gneisses may make
the method valid. Whether the method might also be
applicable to crenulation cleavage variations across
competence contrasts will be left open, for future
work.

From the ®rst three examples, concerning sedimen-
tary rocks with ®rst cleavage, the pseudo-viscosity
ratios might seem surprisingly small: in the order of 6
as a maximum psammite/pelite ratio, and from 2.5 to
4 for another. However, these are a similar magnitude
to values quoted in Section 1, from single-layer folds
or conglomerates. Many of the `competence contrasts'
in Fig. 4 are translated into viscosity ratios of only
about 2. It would be premature to speculate widely, at
this point, on what this means for the rheology of mul-
tilayered sedimentary rocks in generalÐbefore this is
accepted as a `tried and tested' method. Yet, in the
spirit of this celebration of 20 years of the Journal, I
would like to end with two points of speculation. (a) It
appears that trivially small viscosity ratios can gener-
ate measurable strain variations, cleavage refraction
and `competence contrast'. So perhaps rocks are more
similar in their e�ective viscosities than might be
thought. (b) Would the e�ective viscosity ratios be so
small, if sedimentary rocks behaved as power-law
¯uids: for example with stress exponents of 3 or 5? I
think not, but a full answer needs more research.

5. Conclusions

1. In layered rocks with commonly found ranges of
strain and cleavage±bedding orientation, cleavage
may be immeasurably close to the deformed bed-
ding-normal.

2. Cleavage refraction patterns in rocks may provide a
simple method of measuring e�ective viscosity ratios
of rocks, with certain restrictions.

3. According to this method, cleavage refraction across
competence contrasts yields surprisingly small vis-
cosity ratios (e.g. 2 or 4).

4. This approach may provide a new way of dis-
tinguishing Newtonian from non-Newtonian beha-
viour of rocks, over time and space.

Acknowledgements

I should like to thank Richard Hartley for drafting
the diagrams, and Jack Treagus and Sharon Mosher
for helpful comments. This contribution was written
while I was a Senior Research Associate on a NERC
Research Grant held by J.E. Treagus, which is grate-
fully acknowledged.

S.H. Treagus / Journal of Structural Geology 21 (1999) 895±901900



References

Bilby, B.A., Eshelby, J.D., Kundu, A.K., 1975. The change of shape

of a viscous ellipsoidal region embedded in a slowly deforming

matrix having a di�erent viscosity. Tectonophysics 28, 265±274.

Boulter, C.A., 1979. On the production of two inclined cleavages

during a single folding event: Stirling Range, S.W. Australia.

Journal of Structural Geology 1, 207±219.

Gay, N.C., 1968a. Pure shear and simple shear deformation of in-

homogeneous viscous ¯uids. 1. Theory. Tectonophysics 5, 211±

234.

Gay, N.C., 1968b. Pure shear and simple shear deformation of in-

homogeneous viscous ¯uids. 2. The determination of the total

®nite strain in a rock from objects such as deformed pebbles.

Tectonophysics 5, 295±302.

Geiser, P.A., 1974. Cleavage in some sedimentary rocks of the cen-

tral Valley and Ridge Province, Maryland. Geological Society of

America Bulletin 85, 1399±1412.

Ghosh, S.K., 1982. The problem of shearing along axial plane foli-

ations. Journal of Structural Geology 4, 63±67.

Gray, D.R., 1981. Cleavage±fold relationships and their implications

for transected folds: an example from southwest Virginia, U.S.A.

Journal of Structural Geology 3, 265±277.

Groshong Jr, R.H., 1976. Strain and pressure solution in the

Martinsburg slate, Delaware Water Gap, New Jersey. American

Journal of Science 276, 1131±1146.

Hara, I., Shimamoto, T., 1984. Folds and folding. In: Uemura, T.,

Mizutani, S. (Eds.), Geological Structures. John Wiley,

Chichester, pp. 191±243.

Lisle, R.J., Rondeel, H.E., Doorn, D., Brugge, J., van de Gaag, P.,

1983. Estimation of viscosity contrast and ®nite strain from

deformed elliptical inclusions. Journal of Structural Geology 5,

603±609.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-

Hill, New York.

Ramsay, J.G., 1982. Rock ductility and its in¯uence on the develop-

ment of tectonic structures in mountain belts. In: HsuÈ , K.J (Ed.),

Mountain Building Processes. Academic Press, London, pp. 111±

127.

Ramsay, J.G., Huber, M., 1983. The Techniques of Modern

Structural Geology. In: Strain Analysis, Volume I. Academic

Press, London.

Sengupta, S., 1997. Contrasting fabrics in deformed dykes and host

rocks: natural examples and a simpli®ed model. In: Sengupta, S

(Ed.), Evolution of Geological Structures in Micro- to Macro-

Scales. Chapman & Hall, London, pp. 293±319.

Sherwin, J.-A., Chapple, W.M., 1968. Wavelength of single-layer

folds: a comparison between theory and observation. American

Journal of Science 226, 167±179.

Siddans, A.W.B., 1972. Slaty cleavageÐa review of research since

1815. Earth Science Reviews 8, 205±232.

Treagus, S.H., 1982. A new isogon±cleavage classi®cation and its ap-

plication to natural and model fold studies. Geological Journal

17, 49±64.

Treagus, S.H., 1983. A new theory of ®nite strain variation through

contrasting layers, and its bearing on cleavage refraction. Journal

of Structural Geology 5, 351±358.

Treagus, S.H., 1988. Strain refraction in layered systems. Journal of

Structural Geology 10, 517±527.

Treagus, S.H., 1993. Flow variations in power-law multilayers: impli-

cations for competence contrasts in rocks. Journal of Structural

Geology 15, 423±434.

Treagus, S.H., 1997. Deformation partitioning in folds: implications

for fold geometry and cleavage patterns. In: Sengupta, S (Ed.),

Evolution of Geological Structures in Micro- to Macro-Scales.

Chapman & Hall, London, pp. 341±372.

Treagus, S.H., Sokoutis, D., 1992. Laboratory modelling of strain

variation across rheological boundaries. Journal of Structural

Geology 14, 405±424.

Treagus, S.H., Hudleston, P.J., Lan, L., 1996. Non-ellipsoidal in-

clusions as geological strain markers and competence indicators.

Journal of Structural Geology 18, 1167±1172.

Williams, P.F., 1976. Relationships between axial-plane foliations

and strain. Tectonophysics 30, 181±196.

Wood, D.S., 1974. Current views on the development of slaty clea-

vage. Annual Review of Earth and Planetary Sciences 2, 369±401.

Yang, X., Gray, D.R., 1994. Strain, cleavage and microstructure

variations in sandstone: implications for sti� layer behaviour in

chevron folding. Journal of Structural Geology 16, 1353±1365.

S.H. Treagus / Journal of Structural Geology 21 (1999) 895±901 901


